
www.elsevier.nl/locate/jnlabr/yjfls

Journal of Fluids and Structures 19 (2004) 635–650

Aeroelastic scaling for rotary-wing aircraft with applications

P.P. Friedmann

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109-2140, USA

Received 15 October 2003; accepted 25 March 2004

Abstract

This paper presents a new treatment of the aeroelastic scaling problem for rotary-wing vehicles (i.e. helicopters and

tiltrotors). It is shown that the offset hinged spring restrained blade model is the rotary-wing equivalent of the typical

cross section that has been used during the last 50 years to obtain aeroelastic scaling laws for fixed wing vehicles. A new

two-pronged approach for developing refined aeroelastic scaling laws for rotary-wing aeroelastic and aeroservoelastic

applications is presented. It combines the classical approach with computer simulations to obtain new refined

aeroelastic scaling relations. The rotary-wing scaling laws are applied to the vibration reduction problem in helicopter

rotors using an actively controlled, partial span, and trailing edge flap. The results obtained for a Mach scaled rotor are

compared with those obtained for a Froude scaled rotor. The results indicate that the Mach scaled rotor is needed so as

to obtain the correct actuation requirements for vibration reduction.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The issue of aeroelastic scaling, which has received limited attention during the last two decades has become quite

important recently with the increased use of active materials for aeroelastic applications. The area of smart structures,

or structures built from active materials, which combine controls, active materials and microprocessors has undergone

considerable growth during the last 15 years. Active materials based actuation has been considered and applied to a

variety of fixed and rotary-wing problems. The fixed wing applications have focused on static aeroelasticity and

divergence control, suppression of panel flutter, wing flutter suppression, and wing/store flutter suppression. The

primary rotary-wing applications are vibration reduction and noise suppression in helicopter rotors. Among these

applications the most promising are: (1) active flutter suppression in fixed wing aircraft (Lin et al., 1996; Lazarus et al.,

1997; Friedmann et al., 1997), and (2) vibration reduction, blade vortex interaction (BVI) alleviation, and noise

reduction in rotorcraft (Friedmann, 1998; Fulton and Ormiston, 1998; de Terlizzi and Friedmann, 1999; Chopra, 2000).

Actuators built from adaptive materials that are used for the aeroelastic applications discussed above, are frequently

demonstrated on small-scale models used in wind-tunnel tests. The primary purpose of these tests is to demonstrate the

feasibility of the proposed approach. It is therefore very important to be able to relate the test results obtained on the

small scale model to the behavior of the full scale configuration. In aeroelasticity, such relations between the scale model

and the actual configuration are usually governed by aeroelastic scaling laws.

This paper has several objectives: (i) development of basic scaling for rotary-wing aircraft, (ii) implementation of a

new two-pronged approach to rotary-wing aeroelastic scaling, which can accommodate both active materials based

actuation, as well as active controls and (iii) application of the scaling laws to a rotary-wing application, involving

vibration reduction using an actively controlled, partial span, trailing edge flap.
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Nomenclature

a nondimensional offset between elastic axis (EA) and midchord

ai lift curve slope

b airfoil, or blade, semi-chord

Cd0 drag coefficient of blade

Ch;Cl ;Cm hinge moment, lift and pitch moment coefficients per unit span

cb nondimensional flap hinge location

CðkÞ Theodorsen’s lift deficiency function

FHX4;FHY4;FHZ4 nondimensional 4 rev�1 hub shears

h; h0 plunge displacement at the EA, and its initial condition

Ib blade flapping inertia

IEA wing section mass moment of inertia about its EA, per unit span

If blade feathering inertia

IMB2 ; IMB3 principal moments of inertia per unit length of blade about cross-sectional axes

Ib control surface mass moment of inertia about its hinge, per unit span

Jp cross-sectional polar moment of inertia

k reduced frequency ð¼ ob=V Þ
Kh spring stiffness in plunge

Ka spring stiffness in torsion

Kb control surface torsional stiffness

Kb;Kz;Kf root spring stiffness in flap, lag and torsion, respectively, proportional to blade bending and torsional

stiffnesses

L lift force per unit span

m section mass per unit span of blade or wing

M Mach number

MEA pitch moment per unit span acting at the EA

MHX4;MHY4;MHZ4 nondimensional 4 rev�1 hub moments

Mb;Mz;Mf elastic restoring moments in flap, lag and torsion, respectively

nL; ng; nn; na;
nO; nV ; nrscale factors for length, gravity, speed of rotation, velocity of flight and density
p; %p pressure and its nondimensional value (¼ p=1

2
rV2)

QI ;QA;QD inertia, aerodynamic and damping moments on blade

ra wing section radius of gyration about its EA

rb flap radius of gyration about its hinge

R rotor radius

t; %t time and its nondimensional value

T1yT19 coefficients for Theodorsen’s theory

V ; %V free stream velocity and its nondimensional value ð¼ V=oabÞ
VF ; %VF flutter velocity, and its nondimensional value

fxg state vector

xA offset between elastic center and aerodynamic center in blade cross section

xI offset between elastic center and the mass center in blade cross section

xa nondimensional static moment of the airfoil about its EA, for undeflected flap

xb nondimensional static moment of the flap about its hinge axis

a airfoil angle of attack

b flap deflection angle, also flapping angle of blade

bp precone angle

z damping coefficient, also lag angle of blade

yf flap hinge location

YG blade geometric pitch angle

l inflow ratio

m advance ratio
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Such scaling laws are important for the design of small, scaled models, used in rotary-wing aeroelastic and

aeroservoelastic testing. These scaling laws play a critical role when interpreting the results of wing tunnel tests

involving adaptive materials based actuation for aeroelastic applications. Furthermore, with the advent of a new

generation of unmanned rotary-wing vehicles that can vary in size from rotors several feet in diameter to micro air

vehicles having rotors as small as six inches or less, which are described in detail in a recent book edited by Mueller

(2001), the issue of aeroelastic scaling has resurfaced as an important research topic in a modern context.

2. Background on classical aeroelastic scaling

Classical aeroelastic scaling laws for fixed wing applications have been based on the concept of a typical cross section

combined with Theodorsen-type frequency domain aerodynamics (Bisplinghoff et al., 1955). The geometry of this

problem is illustrated in Fig. 1. During the last 50 years aeroelastically scaled wind tunnel models have been widely used

in testing, and aeroelastic scaling considerations that enable one to relate wind tunnel test results to the behavior of the

full scale system have played an important role in aeroelasticity. Such scaling relations have relied on dimensional

analysis to establish scaling parameters used for aeroelastically scaled models, suitable for wind tunnel testing. It is

interesting to note that despite its importance, the literature on this topic is not extensive, and most of it was done in the

late 1950s and early 1960s (Bisplinghoff et al., 1955; Regier, 1963).

Similarity methods in engineering dynamics have been discussed in some specialized books, such as Baker et al.

(1991), and mathematical aspects of scaling and self-similarity has been presented recently in a modern setting

(Barenblatt, 1996). However, only a very limited amount of this information has been exploited for aeroelastic

applications.

Recently, the author has recognized that classical aeroelastic scaling considerations are inadequate when dealing with

situations where the control system interacts with the aeroelastic problem, and actuation issues become important. The
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mm mass ratio ð¼ m=prb2Þ
n kinematic viscosity

x nondimensional plunge displacement ð¼ h=bÞ
r air density

f blade torsional displacement

f1;f2 phase lag angles

c azimuth angle

oh natural frequency in plunge ð¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kh=m

p
Þ

oa natural frequency in pitch ð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka=IEA

p
Þ

ob natural frequency of flap ð¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kb=Ib

p
Þ

%ob; %oz; %of rotating fundamental blade frequencies in flap, lead-lag and torsion, respectively

O rotor r.p.m.

ð�Þ nondimensional time derivative dð Þ=d%t
ð�Þ derivatives with respect to time

V
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cβb
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Fig. 1. Definition of parameters for three degree of freedom aeroservoelastic model.
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issue of aeroelastic scaling for aeroservoelastic applications, as well as for adaptive materials based actuation has been

addressed in recent studies (Friedmann et al., 1997; Friedmann and Presente, 2001).

The classical approach to aeroelastic stability problems, i.e., flutter, for fixed-wing applications is treated in detail in

Bisplinghoff et al. (1955). The objective here is to generalize this approach to more general classes of problems. The

procedure is best illustrated by considering first the appropriate scaling relations, in incompressible flow, for a two-

dimensional airfoil-control surface combination, under the assumption of simple harmonic motion, shown in Fig. 1.

The extension of these relations to the compressible case is straightforward. For this case, the equations of motion that

describe the typical cross section, with a trailing edge flap and viscous damping is given by

½ %M	f q
��
g þ ½ %C	fq

�
g þ ½ %K	fqg ¼

%V2

pmm

�Cl

2Cm

2Ch

8><
>:

9>=
>;; ð1Þ

where the nondimensional time %t ¼ oat is used. The damping matrix ½ %C	 is given by

½ %C	 ¼ 2

oh
oa
z 0 0

0 z 0

0 0
ob
oa

z

2
64

3
75 ð2Þ

and the generalized degrees of freedom are

xðtÞ

aðtÞ

bðtÞ

8><
>:

9>=
>; ¼

x0eiot

a0eiotþf1

b0e
iotþf2

8><
>:

9>=
>; ¼

x0eiðo=oaÞ%t

a0e½iðo=oaÞ%tþf1	

b0e
½iðo=oaÞ%tþf2 	

8><
>:

9>=
>;: ð3Þ

The loads corresponding to Theodorsen’s theory (Theodorsen, 1935) are
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Values of T1 through T14 are defined in Theodorsen (1935), and T15 through T19 are convenient combinations of the

first fourteen Tis, as indicated in Theodorsen and Garrick (1942). The quantities Ti depend only on the nondimensional

hinge location cb and the nondimensional offset a: Substituting Eqs. (3) and (5) into Eq. (1), neglecting viscous damping
effects and dividing by ðo=oaÞ

2 yields

�x0 � xaa0eif1 � xbb0e
if2 þ

oa

o

� �2 oh

oa

� �2
x0

¼ F1ðcb; a; k; mm; x0; a0;f1;b0;f2Þ;

�xax0 � r2aa0e
if1 � ðr2b þ ðcb � aÞxbÞb0e

if2 þ r2a
oa

o

� �2
a0eif1

¼ F2ðcb; a; k; mm; x0; a0;f1;b0;f2Þ;

�xbx0 � ðr2b þ ðcb � aÞxbÞa0eif1 � r2bb0e
if2 þ r2b

oa

o

� �2 ob

oa

� �2
b0e

if2

¼ F3ðcb; a; k; mm; x0; a0;f1;b0;f2Þ:

ð5Þ

Buckingham’s p theorem states that the nondimensional solution can then be written in terms of a reduced set of

nondimensional combinations that consist of n � k parameters, where n are the original parameters, and k ¼ 3 are the

primary parameters—M (mass), L (length) and T (time). The nondimensional parameters that can be extracted

ARTICLE IN PRESS
P.P. Friedmann / Journal of Fluids and Structures 19 (2004) 635–650638



from Eqs. (6), using Buckingham’s p theorem are listed below:

x0 ¼
h0

b

� �
; k ¼

ob

V

� �
; mm ¼

m

prb2

� �
;

oh

oa

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kh=m

Ka=IEA

s
ob

oa
;

oa

o
; r2a; r

2
b; cb; a;xa ¼

Sa

mb

� �
; xb ¼

Sb

mb

� �
; a0; b0;f1;f2:

The first 12 parameters can be expressed as combinations of the three primary variables, while the last four are

nondimensional quantities. For aeroelastic stability the quantities of interest are: oF b=VF ; oF=oa and h0=ðba0Þ; where
the subscript F refers to the flutter condition. For aeroelastic similarity all other nondimensional parameters such as mm;
ðoh=oaÞ; ðob=oaÞ; etc. for the model, must have the appropriate values. The external shape (i.e., airfoil type) and
Reynolds number also have to be retained. When compressible flow is considered the list of sixteen parameters, given

above, has to be augmented by an additional parameter, the Mach number M: Increasing the Mach number modifies
the density of the fluid, and with it the mass ratio. Density is related to the Mach number through its value at

stagnation:

r0
r

¼ 1þ
g� 1
2

M2

� �1=ðg�1Þ
: ð6Þ

For the full scale configuration, stagnation density increases with an increase in flight Mach number. The value of the

static density remains unchanged and corresponds to the value at the local altitude analyzed. When wind tunnel tests

are conducted the value of the stagnation density, related to the value of stagnation temperature and pressure, remains

usually unchanged and the value of the static density decreases with an increase in Mach number. When scaling a full

size system for wind tunnel tests, the compressibility effect in the tunnel needs to be reflected in the design of a model.

For wind tunnels that can utilize gases at higher densities such as the transonic dynamic tunnel (TDT) at NASA

Langley research center the special density of the gas used needs to be also considered.

Flutter conditions of similar structural configurations imply that their nondimensional flutter velocity is kept

constant, as well as the Mach number. The pitch frequency of a scaled model relates to that of the full scale

configuration according to the geometrical scaling ratio:

ðoaÞm
ðoaÞw

¼
bw

bm

; ð7Þ

where subscript m stands for model while subscript w for the prototype.

The scaling of damping properties needs to be also addressed. Eqs. (1) and (2) imply that the damping of each mode

is related to the natural frequency associated with that mode. Once the natural frequencies change, the damping

coefficient of a corresponding mode needs to be modified to match the appropriate damping loads:

zm

zw

¼
ðoaÞw
ðoaÞm

¼
bm

bw

: ð8Þ

The aeroelastic scaling considerations discussed above are based on classical solutions that are obtained from Eqs. (1)

and (3)–(6).

3. Refined aeroelastic scaling procedure

For modern applications the classical approach is inadequate for several reasons. The scaling relation for the classical

case does not account for the presence of a control system. The control system may experience saturation, free-play and

friction which introduce nonlinear effects that can not be represented by the simple linear equations that have been used

in this section. Furthermore, the aerodynamic loads may be obtained from computational fluid dynamic codes

involving the solutions of the Euler or Navier–Stokes equations, for such cases the aeroelastic model will contain

aerodynamic nonlinearities (Friedmann et al., 1997). In such situations the aeroelastic or aeroservoelastic studies are

based on refined computer simulations. An alternative, refined, approach to aeroelastic scaling was developed, that is

based on a combination of the classical approach and a computer simulation of the specific problem being considered.

Fig. 2 depicts the new two pronged approach aimed at generating refined scaling laws that are applicable to any

general linear or nonlinear aeroelastic or aeroservoelastic problem. In this approach basic scaling requirements are

established using typical cross-sectional information and dimensional analysis, in a manner that resembles the

conventional, or classical, procedure. This process is represented by the left-hand branch in Fig. 2. In parallel, solutions
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based on computer simulations are obtained for each aeroelastic or aeroservoelastic problem for which refined scaling

laws are required. These computer simulations represent ‘‘numerical similarity solutions’’ that can replace the

analytical, closed form, similarity solutions that are usually sought in the framework of mathematical similarity theory

(Regier, 1963; Baker et al., 1991). This portion of the procedure is represented by the right-hand branch of Fig. 2. By

combining the requirements based on the classical approach with the additional ones based on the computer simulation,

a set of expanded or refined aeroelastic scaling requirements is obtained.

These computer simulations enable one to account for additional effects, such as: presence of multiple control

surfaces and stores, shock wave motion in transonic flow, saturation, free-play and separation. This approach easily

accounts for the presence of the control system, a requirement for aeroservoelastic problems. For such applications the

nondimensional frequency variable oa=o is replaced by a nondimensional time variable %t ¼ oat; and the reduced
frequency is replaced by the nondimensional velocity %V ¼ V=oab: Computer simulations are particularly suitable for
examining the intricate scaling requirements governing control power, control forces and hinge moments, which play an

important role when extrapolating the model tests to the full scale configuration.

Finally, it is important to note that this approach is particularly suitable for applications that involve the use of

adaptive materials based actuation for the modification and control of aeroelastic problems. The two pronged approach

can easily account for all the special characteristics and constitutive relations associated with this class of materials

(Friedmann and Presente, 2001).

4. Aeroelastic scaling for rotary-wing applications

4.1. Basic rotary-wing scaling problem

The rotary-wing aeroelastic scaling problem has received even less attention that its fixed-wing counterpart. The most

comprehensive study in this area is Hunt (1973). A mathematical limitation of this study was the inability to write

fundamental, simple equations, comparable to those representing the typical cross section for the fixed-wing problem.
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Fig. 2. Two pronged approach for generating refined aeroelastic scaling laws.

Fig. 3. Offset hinged spring restrained blade model of a hingeless blade.
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This limitations has been recently removed (Friedmann, 1998) by recognizing that the rotary-wing equivalent of a

typical cross section is the offset hinged, spring restrained model of a helicopter blade shown in Fig. 3.

Using appropriate springs this model, shown in Fig. 3, can be used to represent either an articulated blade or a

hingeless blade. The equation of motion for such an offset hinged spring restrained blade can be taken from

(Venkatesan and Friedmann, 1984). In Venkatesan and Friedmann (1984) the equations of dynamic equilibrium for the

blade configuration shown in Fig. 3, were derived for the fully coupled flap-lag-torsional dynamics of the blade,

undergoing moderate deflections, in forward flight. The use of moderate blade deflections, introduces geometrically

nonlinear terms in the structural, inertia and aerodynamic terms in the dynamic equations of equilibrium. The

aerodynamic loads used in this study (Venkatesan and Friedmann, 1984) were essentially quasi-steady aerodynamic

loads corresponding to Greenberg’s theory. Note that frequency domain aerodynamics are incompatible with forward

flight and therefore the quasisteady assumption is required. Another alternative is the use of time domain

aerodynamics, which was employed in Myrtle and Friedmann (2001).

Using the inertia, structural, aerodynamic and damping moments one can write the dynamic equations of equilibrium

that can be used as the basis for formulating aeroelastic scaling laws for rotary-wing applications.

The inertia moments found in Venkatesan and Friedmann (1984) are written as

QIx3
¼

mO2R3

3
z .b� bzþ b.z� 2ðb ’bþ z’zÞ
� �

þ O2 mxIcosYG
R2

2
ð .b� zfþ .zfÞ

�

þ mxI sinYG
R2

2
½�zþ .zþ 2ðb ’bþ z’zÞ þ fb	

þðIMB3cos
2YG þ IMB2 sin

2YGÞð� .fþ .zbþ 2 ’b’zþ z .b� .YG þ bzÞ

þ ðIMB3 sin
2YG þ IMB2 cos

2YGÞ½f� .f� 2 ’bþ 2 ’fzþ 2f’zþ 2z ’YG �YG	
�
; ð9Þ

QIy3
¼

mO2R3

3
ð2’zb� .bÞ; ð10Þ

QIz3
¼

mO2R3

3
½z� .zþ 2ðz’zþ b ’bÞ � zð1þ 2’zÞ	: ð11Þ

The elastic restoring moments for an offset hinged spring restrained blade, with no hub and control system flexibility,

which is equivalent to a hingeless rotor blade, can be written as (Venkatesan and Friedmann, 1984)

Mb ¼ ðb� fzÞ½Kb þ ðKz � KbÞ sin
2YG	 þ ðzþ fbÞðKz � KbÞ sinYG cosYG ; ð12Þ

Mz ¼ �ðzþ fbÞ½Kz � ðKz � KbÞ sin
2YG	 � ðb� fzÞðKz � KbÞ sinYG cosYG ; ð13Þ

Mf ¼ �Kfðf� zbÞ: ð14Þ

The aerodynamic moments can be written in a general form, that is more compact than the expressions in Venkatesan

and Friedmann (1984),

QAx3
¼ raibO2

R4

4
fAx3

½z; b;f;m; xA;YG ; cos c; sin c; l	; ð15Þ

QAy3
¼ �raibO2

R4

4
fAy3

½z;b;f; m;YG ; cos c; sin c; l	; ð16Þ

QAz3
¼ raibO2

R4

4
fAz3

z;b;f; m;YG ; cos c; sin c; l;
Cd0

ai

�  
; ð17Þ

where fAx3
; fAy3

and fAz3
are complicated expressions given in Venkatesan and Friedmann (1984). The structural

damping moments can be expressed as

QDy3
¼ O ’bgSF ; ð18Þ

QDz3
¼ �O’zgSL; ð19Þ

QDx3
¼ �O ’fgST : ð20Þ
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Note, that when the blade has hinge offset e; and precone bp the aerodynamic and inertia moments will also depend on

these quantities.

The equations of equilibrium of the offset hinged spring restrained blade are given by

Mb þ QIy3
þ QAy3

þ QDy3
¼ 0; ð21Þ

Mz þ QIz3
þ QAz3

þ QDz3
¼ 0; ð22Þ

Mf þ QIx3
þ QAx3

þ QDx3
¼ 0: ð23Þ

Substituting Eqs. (9)–(20) into Eqs. (21)–(23) yields the dynamic equations of equilibrium for the coupled flap-lag-

torsional dynamics of the blade. The resulting dynamic equations of equilibrium are nonlinear, and for aeroelastic

stability boundary calculations the equations have to be linearized about a static equilibrium position in hover, or a

periodic equilibrium condition in the case of forward flight (Friedmann and Hodges, 1993). These equations can be

used as the basis for developing aeroelastic scaling laws in a manner similar to the classical scaling laws described by

Eq. (6).

It is convenient to divide Eqs. (21)–(23) by O2Ib; and introduce nondimensional quantities that are commonly used in
helicopter rotor dynamics, such as g ¼ Lock number ¼ 2raibR4=Ib; where for a uniform blade, one has Ib ¼ mR3=3
and define additional quantities:

KbB

O2Ib

¼ %o2b;
KzB

O2Ib

¼ %o2z ;
Kf

O2Ib

¼
If

Ib
%o2f;

OgSF

IbO2
¼ ZSF2 %ob;

OgSL

IbO2
¼ ZSL2 %oz;

OgST

IbO2
¼ ZST2 %of:

Rewriting the various parameters affecting the rotary-wing aeroelastic problem in terms of the three basic dimensions

M; L; T (mass, length, time) and using dimensional analysis, it can be shown that the problem is governed by several

nondimensional parameters, thus

b; z;fBFi M;Re;m;
%ob

%of
;
%oz

%of
; g;

xA

R
;
xI

R
;
V2

gR
;

E

rV2
; l;

Cd0

ai

;
ob

V
;YG ; ZSi

� �
; ð24Þ

where the index i ¼ 1; 2; 3 implies flap, lag and torsion, respectively.
For complete similarity between dynamic behavior of the model and a full size configuration the function Fi must

have the same values in each system, which implies that the nondimensional parameters in Fi must have the same value

in both systems. Most of the parameters in Eq. (24) are self-explanatory. A new parameter the Froude number ¼
V2=ðgRÞ appears if gravity loads on the blade are taken into account.
When comparing the parameters in Eq. (24) with those that govern the aeroelastic scaling of fixed wing problem

treated in the previous section it is evident that these are more stringent, and satisfying all the relations simultaneously

implies constructing a model that has the same dimensions as the full scale configuration.

The common practice in rotary-wing aeroelastic scaling has been to relax these stringent scaling requirements and

build either a Mach scaled or Froude scaled model (Friedmann and Hodges, 1993). Furthermore, testing at full scale Re

and M numbers is impossible, and usually model rotors are tested at Re numbers that are below full scale values.

4.2. Additional scaling considerations

As indicated earlier, the issue of aeroelastic scaling for rotary-wing applications is one that has not been treated in a

systematic manner in the past. However, there are some excellent practical papers that illustrate the state-of-the-art.

Straub et al. (1985) presents a detailed description of the design of a dynamically scaled AH-64 main rotor, that was

developed for testing on the general rotor model system (GRMS) used in the NASA Langley 4 m� 7 m V/STOL wind

tunnel. This was a 27% dynamically scaled model of the AH-64, with a rotor diameter of 13 ft: The primary thrust of
the test was performance testing, therefore the following parameters were scaled: M-number, Lock number, stiffness

and mass distributions together with blade cross section offsets.

Another recent paper (Singleton and Yeager, 2000) also addresses the issue of important scaling parameters for

model-scale rotors. The principal objective of this research was to isolate the effects of Reynolds number, Lock number,

and blade elasticity so as to better understand their effect on predicting full scale helicopter rotor performance and

dynamic loads from scale-model rotor tests. It was found that both Reynolds and Lock numbers are important, but the

role of dynamic scaling was not determined in a definitive manner.
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It is useful to systematically identify basic relations that play a useful role in the testing of aeroelastically scale rotors,

using Eq. (24). Clearly a fundamental consideration is the geometrical scale of the model defined as

nL ¼
LM

LV

¼
model length

full scale vehicle length
: ð25Þ

Certain quantities can be treated as constants, in most cases, such as gravity, viscosity of air and speed of sound in air

(Hunt, 1973).

ng ¼
gM

gVE

¼ nn ¼
nM

nVE

¼ na ¼
aM

aVE

¼ 1: ð26Þ

In special cases when testing in the transonic dynamic tunnel (TDT) the use of variable density associated with the

heavy gas used in the TDT can alleviate partially some of the scaling limitation encountered in constant density tunnels,

and therefore for such cases nn can vary depending on the density ratio. A similar statement also applies to na:
If the advance ratio on model and vehicle are the same

nV

nOnL

¼ 1

or

nO ¼
nV

nL

: ð27Þ

If the Reynolds number is the same for both configurations then Re ¼ VLr=n implies
nV nLnr

nn
¼ 1;

thus

nr ¼
1

nV nL

: ð28Þ

If the Mach number, M ¼ V=a; is the same on both configurations then
nV

na

¼ 1: ð29Þ

But Eq. (26) implies na ¼ 1; thus nV ¼ 1 or the velocity on the model and the vehicle are the same.

If the Froude number is the same, then

n2V
ngnL

¼ 1: ð30Þ

But Eq. (26) implies ng ¼ 1 thus

nV ¼
ffiffiffiffiffi
nL

p
: ð31Þ

Since the Mach number similarity implies nV ¼ 1 while Froude number similarity implies Eq. (31) one has to either

have a Mach scaled or a Froude scaled rotor.

Since, in most cases Mach scaling and Froude scaling cannot be simultaneously satisfied, the basic question is which

type of scaling should be preferred for a variety of testing objectives. This question can be best answered by a

combination of the material provided in the last two sections, combined with the numerical results presented in the next

sections, and experimental evidence gleaned from previous tests.

Wind tunnel tests, in general, will have three primary objectives:

(i) determining aeroelastic stability in hover or forward flight for either: (a) an isolated blade type of configuration,

where the fuselage degrees of freedom are locked; or (b) a coupled rotor fuselage system where the fuselage degrees

of freedom are free to interact with the blade degrees of freedom;

(ii) performance testing of flexible rotors, where blade flexibility can affect performance;

(iii) tests aimed at determining and controlling vibrations levels in forward flight.

First, it is important to emphasize that the refined aeroelastic scaling procedure, described in the previous section,

allows one to use computer simulation to augment scaling requirements. Using such simulations it is always possible to

compare a Froude scaled rotor with a Mach scaled rotor, for a particular test objective, and the results of the simulation

will identify the potential differences between the configurations. If the differences are small then the cost of building the

model becomes an important consideration, and then Froude scaling might be more cost effective.
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For aeroelastic stability in hover, or coupled rotor/fuselage aeromechanical testing, the static equilibrium position in

hover is important (Friedmann and Hodges, 1993) and therefore Froude scaling is more important.

For both performance testing as well as determining and controlling vibration levels in forward flight past experience

(Straub et al., 1985; Singleton and Yeager, 2000) suggests that Mach scaling is required. This practical experience is also

supported by the numerical results presented in the next section.

Next, it should be noted that the two pronged approach depicted in Fig. 2 applies to rotary-wing aeroelastic scaling

just as well as it does to fixed-wing problems.

Finally, it should be noted that Friedmann (1998) and Chopra (2000) contain a description of a number of tests that

have been conducted on rotors involving active materials based actuation, for aeroelastic control. As shown

(Friedmann, 1998; Chopra, 2000), aeroelastic scaling considerations are sometimes disregarded, and sometimes only

partially implemented. Clearly, if scaling considerations are not carefully considered the results obtained may be

questionable.

5. Results

The purpose of this section is to illustrate the application of the scaling procedure developed in this paper to the

active control of vibrations, implemented by an actively controlled trailing edge flap (ACF), shown in Fig. 4. This

approach to controlling vibrations is described in several previous studies (Myrtle and Friedmann, 2001; de Terlizzi and

Friedmann, 1999). Vibration reduction in this case is achieved by reducing the 4 rev�1 vibratory hub shears and

moments, for a typical four-bladed hingeless rotor for which the basic parameters resemble the characteristics of an

MBB BO-105 helicopter, for which the basic properties are given in Table 1. Other relevant parameters for this rotor are

also given in Myrtle and Friedmann (2001) and de Terlizzi and Friedmann (1999). The various scaling relations for a

Mach scaled and Froude scaled rotor are presented in Table 2. These scaling relations are based on the analysis of the

offset hinged spring restrained blade presented in the paper, and thus it corresponds to the left-hand branch of Fig. 2.

The computer simulations for the vibration reduction correspond to the right-hand branch of Fig. 2. These

simulations provide valuable information on vibration reduction, the flap deflections required for vibration reduction,

and the blade tip deflection in the flapwise direction for the baseline case, as well as for the actively controlled case.

Figs. 5–7 depict the 4 rev�1 baseline hub shears and moments, together with the controlled hub shears and moments

for the Mach scaled and Froude scaled rotors at three different advance ratios: m ¼ 0:15; 0.30 and 0.40. The

aerodynamic loads on the blade are obtained by combining a time domain compressible unsteady aerodynamic model

for the blade flap combination (Myrtle and Friedmann, 2001), combined with a free-wake model (de Terlizzi and

Friedmann, 1999) that is capable of representing the basic aspects of blade vortex interaction (BVI) effects. Thus, the

loads at m ¼ 0:15; where BVI effects are important, are higher than at m ¼ 0:30: However, with increase in advance
ratio, the vibratory hub shears and moments increase rapidly. The values plotted in Figs. 5–7 are nondimensionalized

hub shears and moments. It is evident from Figs. 5–7 that the principal differences are in the vertical hub shears,

however, differences in some of the other components are also evident. Note, that the vertical vibration components

play the most important role in vibration reduction studies.

The flap deflections required for the vibration reduction at the three advance ratios are shown in Figs. 8–10. These

flap angles are obtained from a combination of 2, 3, 4, and 5 rev�1 flap inputs (Myrtle and Friedmann, 2001; de Terlizzi

and Friedmann, 1999). As indicated before, m ¼ 0:15 represents a more challenging vibration reduction task than
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Fig. 4. Blade with actively controlled partial span trailing edge flap.
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m ¼ 0:30: The flap angles required in Fig. 8 for the Mach scaled and Froude scaled rotors are quite different. The
differences in the flap deflections are much larger than in the vibratory hub loads. The maximum flap angles, for

vibration reduction, shown in Fig. 8, are twice as large for the Mach scaled rotor than they were for the Froude scaled

rotor. Furthermore, the time history of the deflections is also quite different. These differences between the Mach scaled

and Froude scaled rotors diminish when the advance ratio is increased to m ¼ 0:30 as shown in Fig. 9. Further increase
in the advance ratio to m ¼ 0:40; tends to increase the difference in the magnitude of the maximum flap deflection as well
as the time history.

Figs. 11–16 compare the uncontrolled and controlled deflections at the blade tip, in the flapwise direction (i.e., out of

the plane of rotation), for the Mach scaled and Froude scaled rotors. It is interesting to note that the differences

between the uncontrolled deflections are smaller than the differences between the controlled blade deflections.

It is clear from the results presented in this section that it is essential to use Mach scaled rotors whenever tests for

vibration reduction in helicopter rotors are carried out. In particular, the actuation requirements for Mach scaled rotors

are substantially higher than for Froude scaled rotors. This is particularly important when designing actuators based on

adaptive materials.

6. Concluding remarks

This study re-examines the issue of aeroelastic and aeroservoelastic scaling in the framework of modern aeroelasticity

with a particular emphasis on rotary-wing aeroelasticity. This is a very important and somewhat neglected aspect of

aeroelasticity. Before presenting the principal conclusions from this study it is important to note that experimental data

comparing full scale behavior with behavior measured on scaled rotor is needed. Such data would play a very important

role for validating the accuracy of the two pronged approaches for generating refined rotary-wing aeroelastic scaling

laws. The principal findings of this study are summarized below.

1. A new, two pronged approach to aeroelastic and aeroservoelastic scaling was developed. It combines the classical

approach with computer simulation of the specific problem. It is capable of providing useful scaling information on

a large number of quantities that cannot be treated by classical aeroelastic scaling considerations.
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Table 1

Full scale rotor characteristic parameters based on MBB BO-105

Characteristic parameter Value Units

Rotor radius, R 16.11 ft

Rotor angular velocity, O 44.51 rad/s

Rotor blade mass per unit length, m 0.1163 lbf s
2=ft2

Table 2

Scaling relations

Quantity Symbol Mach scaled Froude scaled

Freestream velocity nV 1
ffiffiffiffiffi
nL

p
Rotor angular velocity nO 1=nL 1=

ffiffiffiffiffi
nL

p
Bending stiffness nEI n4L n5L
Torsional stiffness nGJ n4L n5L
Polar moment of inertia nIp n4L n4L
Bending moment of inertia nIb

n5L n5L
Blade mass per unit length nm n2L n2L
Young’s modulus nE 1 nL

Frequency no 1=nL 1=
ffiffiffiffiffi
nL

p
Induced velocity nvi

1
ffiffiffiffiffi
nL

p
Nondim. speed of sound n %aN 1 1=

ffiffiffiffiffi
nL

p
Nondim. accel. of gravity n %g 1=nL 1
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2. Numerical simulations of the nondimensional aeroelastic or aeroservoelastic problems provide similarity solutions.

Only such solutions predict correctly the behavior of a full scale configuration, as well as that of aeroelastically

scaled models. For the rotary-wing problem, such simulations can be carried out for Mach scaled or Froude scaled

rotors.

3. The rotary-wing equivalent of the typical cross-sectional analysis used for fixed-wing aeroelastic scaling, is the

offset hinged spring restrained blade model. Aeroelastic similarity requirements based on this model indicate that
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rotary-wing aeroelastic scaling requirements are more stringent than their fixed-wing counterpart, and these can be

satisfied only by full scale configuration.

4. Rotary-wing aeroelastic scaling requirements can be partially satisfied by either Mach scaled rotors, or Froude

scaled rotors. Froude scaled rotors are more suitable for aeroelastic stability tests for isolated blades, or coupled
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Fig. 13. Comparison of baseline tip deflection, for Mach and Froude scaled rotors, at m ¼ 0:30:
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rotor/fuselage aeromechanical stability test, in hover. For all other test objectives, Mach scaled rotors may be

required.

5. The results for the vibration reduction problem on helicopter rotors clearly indicate that Mach scaled rotors have to

be used so as to obtain the correct actuation requirements for the actively controlled flap.

6. Aeroelastic scaling considerations have an important role during the testing of scaled models used to determine the

characteristics of adaptive materials based actuation.
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Fig. 15. Comparison of baseline tip deflection, for Mach and Froude scaled rotors, at m ¼ 0:40:
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Fig. 16. Comparison of controlled tip deflection, for Mach and Froude scaled rotors, at m ¼ 0:40:
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Fig. 14. Comparison of controlled tip deflection, for Mach and Froude scaled rotors, at m ¼ 0:30:
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